最新人教版高一数学必修一教案(大全优秀8篇-凯发k8官方网娱乐官方

作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么我们该如何写一篇较为完美的教案呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。

高中数学必修一教案全套 篇1

一、 教学目标:1.了解普查的意义。2.结合具体的实际问题情境,理解随机抽样的必要性和重要性。

二、重难点:结合具体的实际问题情境,理解随机抽样的必要性和重要性。

三、教学方法:阅读材料、思考与交流

四、教学过程

(一)、普查

1、【问题提出】 p7

通过我国第五次人口普查的有关数据,让学生体会到统计对政府决策的重要作用――统计数据可以提供大量的信息,为国家的宏观决策提供有关的支持。教科书通过对人口普查的有关新闻报道,让学生体会人口普查的规模是何等的宏大与艰辛。

教科书提出了三个有代表性的问题。第一个问题主要是针对人口普查的作用,人口普查可以了解一个国家人口全面情况,比如,人口总数、男女性别比、受教育状况、增长趋势等。人口普查是对国家的政府决策实行情况的一个检验,比如,国家计划生育政策,经济发展战略,国家“普及九年义务教育”政策,人民群众的生活水平等。第二个问题是针对普查本身存在的问题提出的,以加深学生对于普查的理解。学生可能有一个误解,普查就是100%的准确,其实不然,即使是最周全的调查方案,在实际执行时都会产生一个误差。教科书通过这个问题,目的是让学生理解在人口普查中出现漏登是正常情况,调查方案的设计是尽可能让这个误差降低到最小。同时,也要让学生理解人口普查的工作,即使出现漏登现象,人口普查的数据对国家的宏观决策依然具有重要的作用。第三个问题是针对人口普查工作的艰辛而提出的,让学生体会人口普查数据得来不易,要尊重人口普查人员的劳动,对人口普查工作要大力支持。

2、【阅读材料】 p4

“阅读材料”是课堂阅读,目的是让学生了解普查工作的特点和重要性,以及我国目前主要的一些普查工作。进而,总结出普查的主要不足之处,这是从一个方面说明了抽样调查的必要性。

普查是指一个国家或一个地区专门组织的一次性大规模的全面调查,目的是为了详细地了解某项重要的国情、国力。

普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量。

普查是一项非常艰巨的工作,它要对所有的对象进行调查。当普查的对象很少时,普查无疑是一项非常好的调查方式。

(二)、抽样调查

【例1和其后的“思考交流”】 p8~9

紧接着,教科书通过例1和“思考交流”的两个问题,让学生了解普查有时候难以实现。这主要有两个方面的原因,其一,被调查对象的量大;其二,普查对被调查对象本身具有一定的破坏性。这从另一个方面说明了抽样调查的必要性。然后,教科书通过抽象概括总结出抽样调查的两个主要优点。

【例2和其后的“思考交流”】 p9~10

主要是讨论在抽样调查时,什么样的样本才具有代表性。在抽样时,如果抽样不当,那么调查的结果可能会出现与实际情况不符,甚至是错误的结果,导致对决策的误导。在抽样调查时,一定要保证随机性原则,尽可能地避免人为因素的干扰;并且要保证每个个体以一定的概率被抽取到;同时,还要注意到要尽可能地控制抽样调查中的。误差。

由于检验对象的量很大,或检验对检验对象具有破坏性时,通常情况下,所以采用普查的方法有时是行不通的。通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查。其中,调查对象的全

抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点: (1)迅速、及时;(2)节约人力、物力和财力。

解:统计的总体是指该地10 000名学生的体重;个体是指这10 000名学生中每一名学生的体重;样本指这10 000名学生中抽出的200名学生的体重;总体容量为10 000;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查。

例2 为了制定某市高一、高二、高三三个年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:

a.测量少年体校中180名男子篮球、排球队员的身高;

b.查阅有关外地180名男生身高的统计资料;

c.在本市的市区和郊县各任选一所完全中学,两所初级中学,在这六所学校有关年级的小班中,用抽签的方法分别选出10名男生,然后测量他们的身高。

解: 选c方案。理由:方案c采取了随机抽样的方法,随机样本比较具有代表性、普遍性,可以被用来估计总体。

例3 中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率。下面三名同学为电视台设计的调查方案。

甲同学:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中。这样,我就可以很快统计收视率了。

乙同学:我给我们居民小区的每一份住户发一个是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率。

丙同学:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率。

请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?

解: 综上所述,这三种调查方案都有一定的片面性,不能得到比较准确的收视率。

(三)、课堂小结:1、普查是一项非常艰巨的工作,它要对所有的对象进行调查。当普查的对象很少时,普查无疑是一项非常好的调查方式。普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量。2、通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查。其中,调查对象的全 抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点: (1)迅速、及时;(2)节约人力、物力和财力。

(四)、作业: p10练习题; p10【习题1―2】

五、教后反思:

高中数学教案必修一 篇2

(一) 知识与技能目标

理解任意角的概念(包括正角、负角、零角) 与区间角的概念。

(二) 过程与能力目标

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

(三) 情感与态度目标

1. 提高学生的推理能力;

2.培养学生应用意识. 教学重点

任意角概念的理解;区间角的集合的书写. 教学难点

终边相同角的集合的表示;区间角的集合的书写.

1.回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

1.角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

②角的名称:

③角的分类: a

正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角

负角:按顺时针方向旋转形成的角

④注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

⑤练习:请说出角α、β、γ各是多少度?

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

答:分别为1、2、3、4、1、2象限角.

3.探究:教材p3面

终边相同的角的表示:

所有与角α终边相同的角,连同α在内,可构成一个集合s={ β | β = α

k·360° ,

k∈z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈z

⑵ α是任一角;

⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差

360°的整数倍;

⑷ 角α k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90° n·180°,n∈z}.

例5.写出终边在y?x上的角的集合s,并把s中适合不等式-360°≤β<720°的元素β写出来.

4.课堂小结

①角的定义;

②角的分类:

正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角

负角:按顺时针方向旋转形成的角

③象限角;

④终边相同的角的表示法.

5.课后作业:

①阅读教材p2-p5;

②教材p5练习第1-5题;

③教材p.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,

解:??角属于第三象限,

? k·360° 180°<α<k·360° 270°(k∈z)

因此,2k·360° 360°<2α<2k·360° 540°(k∈z) 即(2k 1)360°<2α<(2k 1)360° 180°(k∈z)

故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180° 90°<

各是第几象限角?

<k·180° 135°(k∈z) .

<n·360° 135°(n∈z) ,

当k为偶数时,令k=2n(n∈z),则n·360° 90°<此时,

属于第二象限角

<n·360° 315°(n∈z) ,

当k为奇数时,令k=2n 1 (n∈z),则n·360° 270°<此时,

属于第四象限角

因此

属于第二或第四象限角.

(一)

教学目标

(二) 知识与技能目标

理解弧度的意义;了解角的集合与实数集r之间的可建立起一一对应的关系;熟记特殊角的弧度数.

(三) 过程与能力目标

能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题

(四) 情感与态度目标

通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点

弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点

“角度制”与“弧度制”的区别与联系.

教学过程

初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.

1.引 入:

由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便。在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?

2.定 义

我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.

3.思考:

(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?

(2)引导学生完成p6的探究并归纳: 弧度制的性质:

①半圆所对的圆心角为

②整圆所对的圆心角为

③正角的弧度数是一个正数.

④负角的弧度数是一个负数.

⑤零角的弧度数是零.

⑥角α的弧度数的绝对值|α|= 。

4.角度与弧度之间的转换:

①将角度化为弧度:

②将弧度化为角度:

5.常规写法:

① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.

② 弧度与角度不能混用.

弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

例1.把67°30’化成弧度.

例2.把? rad化成度.

例3.计算:

(1)sin4

(2)tan1.5.

8.课后作业:

①阅读教材p6 –p8;

②教材p9练习第1、2、3、6题;

③教材p10面7、8题及b2、3题.

高中数学教案必修一 篇3

1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进

学生全面认识数学的科学价值、应用价值和文化价值。

2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。

如何建立实际问题的目标函数是教学的重点与难点。

一、问题情境

问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?

问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?

问题3做一个容积为256l的方底无盖水箱,它的高为多少时材料最省?

二、新课引入

导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

1。几何方面的应用(面积和体积等的最值)。

2。物理方面的应用(功和功率等最值)。

3。经济学方面的应用(利润方面最值)。

三、知识建构

例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?

说明1解应用题一般有四个要点步骤:设——列——解——答。

说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极

值及端点值比较即可。

例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才

能使所用的材料最省?

变式当圆柱形金属饮料罐的表面积为定值s时,它的高与底面半径应怎样选取,才能使所用材料最省?

说明1这种在定义域内仅有一个极值的函数称单峰函数。

说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:

s1列:列出函数关系式。

s2求:求函数的导数。

s3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。

例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为

多大时,才能使电功率最大?最大电功率是多少?

说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。

例4强度分别为a,b的两个光源a,b,它们间的距离为d,试问:在连接这两个光源的线段ab上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。

例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。

(1)设,生产多少单位产品时,边际成本最低?

(2)设,产品的单价,怎样的定价可使利润最大?

四、课堂练习

1。将正数a分成两部分,使其立�

2。在半径为r的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。

3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?

4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面abcd的面积为定值s时,使得湿周l=ab+bc+cd最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。

五、回顾反思

(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。

(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。

(3)相当多有关最值的实际问题用导数方法解决较简单。

六、课外作业

课本第38页第1,2,3,4题。

高中数学必修一教案全套 篇4

一)、培养良好的学习兴趣。

1、课前预习,对所学知识产生疑问,产生好奇心。

2、听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

3、思考问题注意归纳,挖掘你学习的潜力。

5、把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。

二)、建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识� 另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

三)、有意识培养自己的各方面能力。

数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

高中数学教案必修一 篇5

1.理解流程图的选择结构这种基本逻辑结构.

2.能识别和理解简单的框图的功能.

3、 能运用三种基本逻辑结构设计流程图以解决简单的问题.

1、 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.

2、 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.

一、问题情境

1.情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

其中(单位:)为行李的重量.

试给出计算费用(单位:元)的一个算法,并画出流程图.

二、学生活动

学生讨论,教师引导学生进行表达.

解 算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费.

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1-2-6.

在上述计费过程中,第二步进行了判断.

三、建构数学

1.选择结构的概念:

(1)先根据条件作出判断,再决定执行哪一种

(2)操作的结构称为选择结构.

如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.

2.说明:

(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点.

3.思考:教材第7页图所示的算法中,哪一步进行了判断?

高中数学必修一教案全套 篇6

教学目标

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

教学重难点

.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程

一、练习讲解:《习案》作业十三的第3、4题

(精确到0.001).

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的 “思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题

三、小结:1、三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

四、作业《习案》作业十四及十五。

高中数学教案必修一 篇7

1、知识与技能

(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2、过程与方法

学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3、情感态度与价值观

(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

重点、难点:用斜二测画法画空间几何值的直观图。

1、学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2、教学用具:三角板、圆规

(一)创设情景,揭示课题

1、我们都学过画画,这节课我们画一物体:圆柱

把实物圆柱放在讲台上让学生画。

2、学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知

1、例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2、例2,用斜二测画法画水平放置的圆的直观图

教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3、探求空间几何体的直观图的画法

(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

4、平行投影与中心投影

投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

5、巩固练习,课本p16练习1(1),2,3,4

三、归纳整理

学生回顾斜二测画法的关键与步骤

四、作业

1、书画作业,课本p17练习第5题

2、课外思考课本p16,探究(1)(2)

高中数学教案必修一 篇8

掌握圆的标准方程,并能解决与之有关的问题

圆的标准方程及有关运用

标准方程的灵活运用

一、导入新课,探究标准方程

二、掌握知识,巩固练习

练习:⒈说出下列圆的方程

⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

⒉指出下列圆的圆心和半径

⑴(x-2)2 (y 3)2=3

⑵x2 y2=2

⑶x2 y2-6x 4y 12=0

⒊判断3x-4y-10=0和x2 y2=4的位置关系

⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过a(-10,0)、b(10,0)、c(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求a2p2的长度。

例3、点m(x0,y0)在x2 y2=r2上,求过m的圆的切线方程(一题多解,训练思维)

最新人教版高一数学必修一教案(大全优秀8篇

五、作业p811,2,3,4

一键复制全文保存为word
相关文章
【高一作文】热点
  • 07-20
  • 07-21
  • 07-22
  • 07-22
  • 07-23
【高一作文】最新
  • 07-20
  • 07-21
  • 07-22
  • 07-22
  • 07-23
网站地图